RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017

FIRST YEAR (BATCH 2017-20) CHEMISTRY (Honours)

Time : 11.00 am – 1.00 pm Paper : I [Gr-B] Full Marks : 35

: 14/12/2017

Date

[Use one Answer Book for <u>Unit I</u> and another Answer Book for <u>Unit II</u>, <u>III & IV</u>]

(Attempt one question from each Unit)

Unit I [10 marks] 1. a) Draw the π -molecular orbital diagram of allyl anion (CH₂ = CH - CH₂) and indicate the HOMO and LUMO in the ground state of the anion. [2] Why $C_2 - C_3$ bond in propene is shorter than C - C bond in propane. [1] Between toluene and t-butylbenzene, which molecule will have higher electron density at the para-carbon atom? Explain your answer. [2] Which of the following two molecules has higher dipole moment? Give reason. [2] Unlike benzyl bromide, 1-bromocyclohepta-2,4,6-triene is highly soluble in water yielding bromide ion in solution. Explain. [2] Write down the difference between conjugation and hyperconjugation. Use suitable example(s) for illustration. [1] Write the cannonical forms of the following carbocation and indicate which one has the greatest 2. contribution towards the resonance hybrid. [2] $> N - CH = CH - CH_2$ Ascertain which species in each of the following pairs is more stable and why? [3] and and State, with reasons, the following species as aromatic, non-aromatic or antiaromatic. [2] i) Which one of the following α -diketones has higher dipole moment? Explain. [1.5] e) Compare the C-N bond lengths (a vs. a') and in (b vs b') in cases of the following compounds. [1.5]

$$O_2N \xrightarrow{a} \underbrace{\hspace{1cm} b} NMe_2 \quad , \qquad O_2N \xrightarrow{a'} \underbrace{\hspace{1cm} b'}_{Me} NMe_2$$

<u>UNIT-II</u> [9 marks]

- 3. a) An electron circles a nucleus of charge Ze of the two orbits 1 and 2 of radii r_1 and r_2 respectively, its total energy is greater while in orbit 1. Prove that $r_1 > r_2$. Also show that the velocity and acceleration in orbit 2 are greater than those in orbit 1.
- 2+2
- b) Draw the probability density versus distance from the nucleus for the following radial distribution functions.

2

$$\Psi_1 = N_1 \frac{r^2}{a_0^2} e^{-\frac{r}{3a_0}}$$

$$\Psi_2 = N_2 \frac{r}{a_0} \left(2 - \frac{r}{3a_0} \right) e^{-\frac{r}{3a_0}}$$

N₁ and N₂ are constants. Rest of the terms has usual meaning.

- c) Electronic configuration of Lithium is written as $1s^2 2s^1$, not $1s^2 2p^1$, despite the fact that n = 2 in both 2s and 2p and according to Bohr model 2s and 2p should have the same energy. What is the reason of this apparent anomaly?
- 2

1

d) Determine the ground state term for V^{3+} .

- 4. a) 'The orbital angular momentum of an electron does not give its total angular momentum' Explain. Which quantum number is used to supplement the orbital angular momentum?
- 2+1

b) State and explain Hund's rule.

3

c) Discuss the origin and physical significance of magnetic quantum number.

- 1+1
- d) Using Slater's rule, calculate the effective nuclear charge on a valence electron in N atom.

1

<u>UNIT-III</u> [8 marks]

- 5. a) Reduction of Fe³⁺, the electron can enter either 3d or 4s. Explain with the reason.
 - b) Calculate Pauling's electronegativity of hydrogen atom from the following data: Bond energies (KJ mole⁻¹): H_2 (458), F_2 (155), HF (565) and Pauling's electronegativity of F = 4.0.
 - c) What are the advantages of mulliken electronegativity scale over Pauling's scale?
- 2

3

- 6. a) Explain why:
 - (i) The electronegativity value of Ga is higher than Al.

2

(ii) Au shows the highest electron affinity amongst all the metals.

2

3

- b) The F-F bond distance in F_2 is 141.3 pm. Calculate Allred-Rochow electronegativity of Fluorine using Slater's rule.
 - What are the disadvantages of Allred-Rochow electronegativity scale?

<u>UNIT-IV</u> [8 marks]

7.	a)	What do you mean by inert pair effect? Explain the effect with proper examples.	2+1
	b)	Comment on the following dipole moment values – CH_3Cl (1.94D), CH_2Cl_2 (1.6D), $CHCl_3(1.03D)$, CCl_4 (0).	3
	c)	Draw the resonance structures of N_3^- and comments on their relative stabilities.	2
8.	a)	How can you explain — (i) ZnO is white when cold but yellow when hot. (ii) When NaCl is treated with Na-vapour form yellow colour.	2+2
	b)	What type of Crystal defect is expected in FeO?	2
	c)	Explain the following:	
		MgSO ₄ is freely soluble in water whereas BaSO ₄ is almost insoluble in it.	2

(3)